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On the Lanczos Method for Solving Symmetric 
Linear Systems with Several Right-Hand Sides* 

By Youcef Saad 

Abstract. This paper analyzes a few methods based on the Lanczos algorithm for solving large 
sparse symmetric linear systems with several right-hand sides. The methods examined are 
suitable for the situation when the right sides are not too different from one another, as is 
often the case in time-dependent or parameter-dependent problems. We propose a theoretical 
error bound for the approximation obtained from a projection process onto a Krylov subspace 
generated from processing a previous right-hand side. 

1. Introduction. In many applications we need to solve several symmetric linear 
systems of the form 

(1.1) ~~~~~Ax(') = Pe)l 1, 2, ... ., k, 

involving the same N x N coefficient matrix A but different right-hand sides b(i). 
When all of the right-hand sides are available simultaneously, then block methods 
such as the block-Lanczos or block-conjugate gradient algorithms [6], [12], and the 
block-Stiefel method [12], [13], can be successfully applied to solve (1.1). 

However, it is often the case in practice that the right-hand sides are not available 
at the same time, i.e., that a given right-hand side b(i) depends on the solutions x(j), 
j = 1, . . ., i - 1, of the previous linear systems. In this case the block methods are no 
longer applicable. For this situation, Parlett [9] suggested using the Lanczos algo- 
rithm to solve the first system and saving the Lanczos vectors thus generated in 
order to provide good approximate solutions to the subsequent systems. For 
example, an approximate solution to the second linear system can be obtained by 
using a projection (Galerkin) technique onto the Krylov subspace generated when 
solving the first linear system. We refer to this as the Lanczos-Galerkin projection 
procedure. If the accuracy obtained from the Lanczos-Galerkin projection process 
alone is not sufficient, a further refinement is needed. The simplest way of improving 
the Lanczos-Galerkin approximation is to start a new Lanczos run with this 
approximation as an initial guess. This will be referred to as the restarted Lanczos- 
Galerkin procedure. An alternative is to use a special L anczos process introduced by 
Parlett [9]. This algorithm consists of orthogonalizing the current Lanczos vector not 
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652 YOUCEF SAAD 

only against the previous two vectors, as is done in the classical Lanczos procedure, 
but also against the last Lanczos vector of the previous Krylov subspace. We will 
refer to this technique as the modified Lanczos algorithm. 

The purpose of the present paper is to analyze these techniques from a theoretical 
point of view. We will establish an error bound which shows that the Lanczos- 
Galerkin procedure provides a good accuracy under the condition that the residual 
vector of the new system is nearly contained in the previously generated Krylov 
subspace. We will also show that the restarted Lanczos-Galerkin method is, in some 
sense, equivalent to a block-Lanczos method. 

2. The Lanczos Algorithm for Solving Linear Systems. As a background, we 
present in this section a brief description of the Lanczos method for solving 
symmetric linear systems. For details consult [9] and the references therein. Consider 
the (single) linear system 

(2.1) Ax = b, 

where A is N x N and symmetric. Suppose that a guess x0 to the solution is 
available, and let its residual vector be ro = b - Axo. In what follows, the norm 11 - 11 
denotes the Euclidean norm and T is some tolerance related to the machine precision 
and some norm of A. Then the Lanczos algorithm for solving (2.1) can be described 
as follows: 

THE LANCZOS ALGORITHM FOR SOLVING LINEAR SYSTEMS. 
1. Start: Compute#,:= Ilroll, and vl := ro/1l3. 
2. Generate the Lanezos vectors: For j = 1, 2,..., do 

vj?: Av+ - 131y1 (v0 0), 

(2.2) a1 := ( j1?1,v1), 

(2.3) v>+ 1 :vj+ - ajvj, 

(2.4) pi3+:= i vj+?iI. 

If ,j + < T then set m j and go to 3; else, compute 

(2.5) vj + := v+ l/j+ 1 

If convergence is reached, then set m:= j and go to 3, else continue. 
3. Form the approximate solution: 

(2.6) xm x0 + Vm.T '(I,el), 

where Vm is the N x m matrix 

(2.7) Vm =[l 2 

and Tm is the tridiagonal matrix 

a:l #2 

#2 a2 #3 
(2.8) Tm= . .33 

..A. 
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The convergence test at the end of step 2 is feasible because there exists a simple 
formula that can be updated inexpensively at every iteration of step 2, and which 
allows one to compute the residual norm without actually computing the approxi- 
mate solution [9]. In exact arithmetic, the vectors vi computed from this process 
form an orthonormal basis of the Krylov subspace Km = span{ ro, Aro,..., Amlro}. 
Note that we have VQTA Vm = Tm, so that Tm is nothing but the matrix representation 
of the projection of A onto the Krylov subspace Km with respect to the basis Vm. 
Furthermore, it is easily seen that the Lanczos algorithm realizes a projection 
process, i.e., a Galerkin process, onto the Krylov subspace Kn; see, e.g., [9], [10]. 
Specifically, the approximate solution xm can be found by noting that it belongs to 
the affine subspace xo + Km and that its residual vector b - Axm is orthogonal to 
Km. If we denote by Pm the orthogonal projector onto Ki, this means that the 
Lanczos method solves the approximate problem: 
(2.9) Findxm E xo + Km such that Pm(b-Axm) = 0. 

In exact arithmetic, the approximation xm thus computed is identical with that 
provided by m steps of the conjugate gradient (CG) method when A is positive 
definite [9]. When A is not positive definite, the conjugate gradient method may 
break down or become unstable, but this relationship between the Lanczos and the 
CG algorithms has been exploited to derive stable generalizations of the conjugate 
gradient algorithm to indefinite systems [2], [7], [9], [11]. 

A well-known and troublesome misbehavior of the Lanczos algorithm is the loss 
of orthogonality of the v 's. Although this does not prevent the method from 
converging, it often causes significant slowdown. Parlett [9] and Simon [15] have 
made the important observation that the fast convergence properties can be regained 
by resorting to different sorts of partial reorthogonalizations. This important matter 
will be further discussed in the last section. 

3. The Lanczos-Galerkin Projection Method. Consider now the two linear systems 

(3.1) Ax(') = b(i), i 1, 2, 
and assume that m steps of the Lanczos algorithm described in the previous section 
have been performed to solve the first system in a first pass. We will use the notation 
of Section 2 for the resulting variables and definitions associated with this first linear 
system: Thus, Pm denotes the orthogonal projector onto the Krylov subspace 
Km = span{ v1, Av1,..., Am-lvi}, where v1 is obtained by normalizing the initial 
residual vector ro = b(l) - Ax('). We wish to use the information gathered during the 
solution of the first system to provide an approximation to the second system, 

(3.2) Ax(2)= b(2) 

Clearly, we must assume that the vectors vi, i = 1, 2, ..., m, as well as the tridiago- 
nal matrix (2.8), have been saved, possibly in some secondary storage. 

Suppose that we know an initial guess x) to the solution of (3.2) and let r02) be 
the corresponding residual vector, i.e., rO2) = b 2 0-Ax&). A natural way of improv- 
ing the approximation x4) is by means of a Galerkin projection onto the Krylov 
subspace Km generated for the solution of the first system. Such an approximation is 
obtained by solving the m-dimensional problem 

(3.3) Pm (b(2) -Az) = 0 



654 YOUCEF SAAD 

for z in the affine subspace x(2) + KMi i.e., for z = x4) + y, y E Km. For the 
variable y, the condition (3.3) translates into the Galerkin problem 

(3 .4) Pm(r(2) - Ay) = 0, 
or equivalently, 

VT(r(2) - Ay) = 0, 

whose solution is V = VmT.-VTr This yields the desired approximation 

(3.5) z= x&2) +?y = x2) + V T,1VTr(2). 

We will refer to the above method as the Lanczos-Galerkin process. This process 
requires solving a tridiagonal linear system of size m and forming a linear combina- 
tion of m vectors of length N. The matrix A is invoked only when computing the 
residual ro . This means that the whole procedure requires only one call to the 
matrix-by-vector multiplication subroutine. 

Note that since Pm is a projector, we can rewrite (3.4) as 

(3 .6) Pm ( Pmr(p2) - Ay) = 0, 

which will be useful shortly. 
An important question regarding the approximation obtained from the above 

Lanczos-Galerkin process is its accuracy. The usual norm used to analyze the rate of 
convergence of the conjugate gradient type methods, when A is positive definite, is 
the A -`-norm defined by IIXIIA -1 = (A -1X, x)1/2. An important optimality property, 
which allows one to derive error bounds in projection methods, is that when A is 
positive definite the solution of any Galerkin problem of the form (3.3) minimizes 
the A - '-norm of the residual vector b - Az over all vectors z in x4) + Kin; see, e.g., 
[2], [4], [14]. Alternatively, the vector y as defined by (3.5) is solution of the Galerkin 
problem (3.6), and therefore it minimizes the A-l-norm of the residual vector 

Pmro2) - Ay over all vectors y of Km. We are now in a position to state the main 
result of this section. 

THEOREM 3.1. Assume that A is symmetric positive definite with smallest eigenvalue 
X1 and largest eigenvalue XN. Let the projected residual Pmro2) be expressed in the 
Krylov basis as 

m 
(3.7) p r2) = 7jA 

j=1 

Then the approximation z obtained from the Lanczos-Galerkin projection process (3.5) 
is such that 

(3.8) Ilb2 -AZ IIA-1 = IIIA- Pm)rd )A||-1 + E, 

where 

(3.9) llTmlVl(IA) X 

in which y = (XN + Xl)/(XN - X1) and Tm represents the Chebyshev polynomial of 
the first kind of degree m. 
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Proof. The residual vector r - b2 - A = b - A(x) ? y) = ro2- Ay can be 
decomposed as 

(3 .10) r = ((I-Pm) r(2) +(p mr(2) - AY), 

from which we get by the second triangle inequality 

(3.11) |||r IIA- - V(I - PM)r(2) (A2 | |Pmr(2)-Aj|A-, 

which can be rewritten in the form 

(3.12) llrllA- = I (I- Pm)r(2)A-1 + allPmr(2) - AYIIA1 with -1 < a < 1. 

As was indicated earlier, y minimizes Pro - AyII A over all vectors y in Km. 
Let y be an arbitrary vector in Km which we express as y = s(A)vl, where s is a 
polynomial of degree < m - 1, and let us denote by q the polynomial q(t) 
?7m_l q1 t'- and by Pj the set of all polynomials p of degree < j. Then we have 

Ilpmr2- AYO|A-1 = min llq(A)v1 - AyIIA-1 0 ~~~y e Km 

(3.13) = min (q(A) -As(A))vlIA-' 
sC pm- 1 

- min IIp(A)V1IIA-1 =L|qll min IIp(A)V1IIA-1. 
PePm,P(O)=1ni PePm,P(O)=1 

The last term of the right-hand side is a classical factor in the theory of the conjugate 
gradient method, and a well-known upper bound for it yields (e.g., [5]) 

(3.14) |Pmr 
- AY IA- < 1711I TVMY) 

with y defined in the theorem. The result follows by combining (3.12) and (3.14). a 

Before discussing the above result, we will make a few comments. First, we should 
emphasize that E in the theorem is not necessarily positive. We prefer an equality of 
the form (3.8) rather than a simpler upper bound for the residual norm, because we 
wish to examine closely the particular cases when one of the terms in the right-hand 
side of (3.8) is much smaller than the other. Another remark is that the expansion 
(3.7) can be replaced by a simpler, but equivalent, expansion of the form 

(3.15) Pmr02) = 1v1+ Ag, 

where g is a vector of Kmi. The above expansion is unique and is based on the 
decomposition of the subspace Km into the direct sum Km = span{ v } ED AKmi 1. 

The scalar % is neither known a priori nor easy to estimate. However, it is readily 
computable by noting that ij% = q(O), where q is the polynomial defined in the 
proof, and then using the available expansion Pmro2) = Lm_ tiv* Since each vi is of 
the form vi = qi_1(A)v1, where qi-l is the ith Lanczos polynomial [8], we have 

711 = 7Ll ti qi- (0). The sequence qj(O) can be obtained inexpensively, thanks to the 
three-term recurrence of the Lanczos polynomials, 

f+lqj(X) = (X - ai)qj_l(X) - f31qj-2(X), ] = 1,2,..., 

with the convention that q- 1(X) 0. 
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The assumption that A is positive definite is made only to provide the standard 
tool for analyzing the convergence of the method. It is by no means necessary for the 
definition of the algorithm. 

We now interpret the result of the theorem. Notice that if r(2) belongs to the 
previous Krylov subspace Ki,m then the term 11(l - Pm)r(2) IIA-1 in the right-hand 
side of (3.8) vanishes. Then the theorem tells us that in this case the method will 
provide a good accuracy when ql is not too large. In fact, the accuracy will be of the 
same order as that obtained from m steps of the classical conjugate gradient 
method. Note that if % = 0 then the term E reduces to zero. As a consequence, an 
extreme case where the new system can be exactly solved by the application of the 
projection process occurs when (I - Pm)r(2) = 0, i.e., ro(2) belongs to Ki,m and when 
simultaneously % = 0, i.e., ro2) has no component in vl. These two conditions can 
be summarized by the single condition that r(2) E AKMi-p 

The opposite extreme case is when the projection process leaves the starting 
approximate solution x) unchanged. This happens when Pmro2) = 0, i.e., when ro2 
is orthogonal to Km. In this case y = 0, i.e., z- = x&), and the theorem yields the 
obvious result lIrlIA-1 = Ir IA(2)IA-i because % = 0. 

More realistic situations arising in practice will lie somewhere between these two 
extremes. For these general cases, the theorem shows that the error is the sum of a 
'small' part E and a 'large' part II(-IPm)rj2)IIA-1. The 'small' part is usually as 
small as would be obtained from m 'average' steps of the usual conjugate gradient 
algorithm. The 'large' part depends essentially on how far the new system is from 
the previous one, and can be quite large as compared with E. Perhaps the most 
interesting and useful situations arise in time-dependent, or more generally parame- 
ter-dependent problems, in which the right-hand sides P), i = 1, 2,..., change very 
little. Then the system can be expected to be solved relatively accurately because the 
'large' term II(1-Am)r-2)IIA-1 becomes small. 

When 11(1 - Pm)rI2)IA-1 is large, as compared with E, then the theorem indicates 
that the error in the A -`-norm sense cannot be decreased below 11(I - P I)rJ2) A-1 by 
the projection process (3.5) alone. This means that we must further improve the 
solution, and this is the subject of the next section. 

4. Refining the Lanczos-Galerkin Approximation. We start by summarizing the 
essential features of the two stages of the process described in the previous section. 

1. A first linear system Ax(') = b(l) has been solved by the Lanczos method. As a 
by-product we obtain a Krylov subspace Km of dimension m, an orthonormal basis 
Vm = [vl, v2,.. ., Vm] of that subspace and a tridiagonal matrix Tm representing the 
section of A in Km with respect to this basis. 

2. We now want to solve a new linear system Ax (2) = b(2). Some initial guess x&) 
is improved by means of a Lanczos-Galerkin projection process onto the Krylov 
subspace generated from the previous linear system. This yields the approximation 
z. 

The accuracy of the approximation z thus obtained may be far from sufficient, as 
is shown by the comments at the end of the previous section. We are therefore faced 
with the problem of improving the approximation z- still further. We consider two 
different procedures for achieving this. 
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4.1. Starting a New Lanczos Process. The simplest way of improving the current 
approximation z obtained from the projection process is to start a fresh Lanczos 
process from the current approximation z, as described in Section 2. Let v5i, 
i = 1, 2, .. ., m, be the new Lanczos vectors with v-1 = I/I r-I. The initial residual r of 
the new Lanczos iteration, and therefore also the initial vector v-1, has the property 
of being orthogonal to the subspace Km associated with the previous linear system. 
This is a peculiar property for an initial vector of the Lanczos algorithm, and an 
important question that arises is whether convergence is likely to be affected by it. 
As will be seen shortly, the answer is yes. We will need the following lemma. 

LEMMA 4.1. Let v-1 be any vector that is orthogonal to some Krylov subspace Km. 
Then for any integer k not exceeding m - 1 we have 

(A V IVi= < Si m -k , 

where { v1, V2 ... S Vm) } is the Lanczos basis of Km. 

Proof. Because of the symmetry of A, we must show that (v-l, AkVi) = 0, for 
1 < i < m - k. For this it suffices to prove that Akvi is a member of Km for any 
integer i satisfying k + i < m. This property can be established by a simple 
induction argument on k, as follows. It is obviously true for k = 0. Assume that it is 
true for k, and consider 

Ak+lvi = A k[Avi] = Ak[3i+lVi+l + aivi + fivi-l] 

=I3i+?A kVi+l + aiA kvi + fiA kvi-1 

with the usual convention that vo- 0. By the induction hypothesis, each of the 
terms in the right-hand side belongs to Km, provided that k + (i + 1) < m. The 
proof is complete. E 

A consequence is that for any polynomial qk- 1 of degree < k - 1 we have 

(qk- (A) v-1vi) = 0, 1 < i < m - k + 1. 
In particular, any vector v-k of the new Lanczos sequence can be written in the form 
Vk = qk_ (A) v for some polynomial of degree k - 1, and therefore we have 

(vk IVi )= o, i +k <m + 1. 

Thus, the vectors { v-i } and { vk } do not only form two orthonormal systems, but 
they are also orthogonal to each other, for i + k < m + 1. In particular, as long as i 
does not exceed [m/21, the system { vl, v-l, v2, V2 .. ., vi, vi } of dimension 2i forms 
an orthonormal basis of the subspace 

Ki= spant v1, Avj, . . ., A'-lvl; v-1, Av-,..., A i-1v} 

=span{Z1, AZ,. ..,A'-'Z1}, 

in which Z1 = [vl, v-l]. A well-known method that uses a projection process on a 
subspace of this form is the block-Lanczos method, or its equivalent block-Con- 
jugate-Gradient method [6], [13]. This algorithm is a block generalization of the 
Lanczos algorithm of Section 1, in which v, (and subsequently the vi's) is replaced 
by a block of several column vectors. Thus, the above subspaces Ki* are nothing but 
those used in the block-Lanczos method with blocksize 2 and initial block Z1. The 
approximate solution generated at the ith step of the new Lanczos run belongs to 
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the affine subspace z + Ki*. Moreover, its residual vector is proportional to the 
vector Ei+1 which is orthogonal to the subspace Ki*. These two properties char- 
acterize the approximate solution obtained by a block-Lanczos algorithm. Thus we 
have proved the following theorem. 

THEOREM 4.1. For i < m/2, the Lanczos process applied to the linear system 
Ax(2)-b(2) , started with the initial vector z provided by the Lanczos-Galerkin ap- 
proximation, is mathematically equivalent to the block-Lanczos method with block 
dimension of 2 and starting block Z1 = { v1, V-1 }. 

The rate of convergence of the block-Lanczos algorithm for solving linear systems 
has been studied in [6], [12] and we will not report the results here. Suffice it to say 
that, not surprisingly, the bounds on the rate of convergence of the block method are 
superior to those of the single-vector method. Thus, the first steps of the new 
Lanczos run enjoy the fast convergence of the block-Lanczos method without the 
usual additional cost. 

4.2. The Modified Lanczos Process. An alternative to the procedure described 
above is one that continues naturally the previous Lanczos process by performing a 
Galerkin method onto a sequence of subspaces containing Km and of increasing 
dimension. One such procedure was first introduced by Parlett [9] and was later 
rediscovered by Carnoy and Geradin [1] in a different context. The following 
algorithm, which will be referred to as the modified Lanczos algorithm, differs only 
in its presentation from Parlett's algorithm and the algorithm in [1]. Its inner loop 
computes a sequence of vectors wi, i = 1,2,. .., which are orthonormal to each 
other and also orthogonal to the vi's, i = 1, . . ., m, generated for the first system. 

THE MODIFIED LANCZOS ALGORITHM. 
1. Start: Compute r3 

- 
: and w1 :/f3l. 

2. Iterate: For = 1, 2, .. ., do 

W+ 1 :=Awj- I3jj>1 (w0 0), 

aj := (WJ+1 w,)1 

W +l W= w+ 1 ojwj, 

Wi- ( j+1 , vm) , 

W +l = Wi +l jSi m, 

If 8j + < T then set p j and go to 3; else, compute 

wj+1 := W+ I/A + 1, 

If convergence is reached, then set p := j and goto 3, else continue. 
3. Form the appropriate solution: 

zp:_ z + WpTm1 (f3iem+l), 

where em +I is the vector of length m + p whose (m + I)st component is 1 and all 
others are 0, 

Wp -[v15 V2,.* .. yi VM, WI p] 
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and where Tm,p is the matrix 

aX1 /32 

32 a2 /3 

33 a3 

Pm am 61 82 6p 

TM,= 681 a, I2 

82 /2 a2 /3 

* /33 a3 

p pp P 

The main difference between step 2 of the modified Lanczos algorithm and the 
standard Lanczos algorithm is that at each step we now orthogonalize against one 
more vector, namely the vector vm. To justify the algorithm, we will first show that 
this simple modification of the Lanczos algorithm ensures that the set of vectors Wp 
is orthonormal. Then we will see that the above algorithm realizes the Galerkin 
process onto span{ Wp }. 

THEOREM 4.2. Suppose that p steps of the modified Lanczos algorithm are feasible. 
Then the vectors V1, V21 ... I Vm, WI, W2, . . . , wp are orthonormal. 

Proof. Since { vj }J1 m is an orthonormal system, we must prove that for 
j= 1,2, .. ., we have: 

1. wj is orthogonal to the vi's, i = I,., m; 
2. wj is orthogonal to the previous wi's, i = 1, 2,..., j-1. 

The proof is by induction. Clearly, the above property is true for j = 1, because w, 
is equal to r, apart from a multiplicative constant, and r is known to be orthogonal 
to the subspace Km by the Galerkin condition. Suppose that the property is true for 
j and let us prove that it is true for j + 1, i.e., that 

(4.1) (wj+1,vi) = O, i= 1,2,...,m, 

(4.2) (wj,1,wi)= O, i= 1,2,..., j. 

Consider (4.1) first. By construction, (Wj+1, vm) = 0, so we can restrict ourselves to 

the case i < m. We have 

(wj+I vi) = (?j+1) 1[(Awj, vi) - aj(wj, v,) - 
#J(w , vi) - 6j(Vm, v,)] 

By the induction hypothesis and because { vi } i =.m is orthonormal, the terms 

(wj, vi), (wj-,, vi), and (vm, vi) on the right-hand side all vanish. The remaining term 

(Awj, vi) can be expanded as follows: 

(Awj,vi) 
= (wj,Avi) = (wi' Pi+lvi+l + aiv1 + fivi-J) 

= Pi+?(wj, vi+l) + ai(wj, vi) + /1(wJ, v,1-). 



660 YOUCEF SAAD 

Using again the induction hypothesis, we see that all these terms are zero. This 
completes the proof of (4.1). 

Now consider (4.2): 

(wj+?, wi) = [#j+,] [(Aw1,wi) - a(JwJ Wj) - j(wJ-, wj) -6J(Vm W,w)] 

Assume first that i <j - 1. By the induction hypothesis, the three terms (wj, w), 
(w- 1,wi), and (vm, w) in the above expression vanish. Proceeding as before, the 
remaining term (Awj, w,) is expanded as follows: 

(Awj,w) =(w1,Aw) = (w1,,Bi+w aw + fi1w + i-Vm) 

= A+1(WjW,+J) + a1(w1,w1) + A1(WJ1W11) + 61(WJ, Vm), 

which, by a final application of the induction hypothesis, shows that (Awj, wi) =0. 
Hence, (wj +1,w) = 0, for i <j - 1. For i =j and i =j - 1, the scalars a-, f3y 
and Sj have been chosen precisely so that the property is true. This completes the 
proof. E 

Consider the subspace spanned by the orthonormal system Wp, which we will 
denote by Km,p The matrix representation WJTAW of the section of A in the 
subspace Km p with respect to the basis Wp is precisely the (m + p) x (m + p) 
matrix Tm p. Hence, the new approximate solution obtained at step p of the 
projection process onto the subspace Km p is given by 

zp = z + PT W r. p pmp p 

Noticing that W r = WJIIr iwl, this simplifies to 

z = z + llriJWp Tmtem+i, 

which explains the formula used in step 3 of the algorithm. 
Note that Km p is no longer a Krylov subspace. It contains the subspace Km, but 

the newly introduced wj vectors bear no obvious relation with any basis vectors used 
in standard projection techniques. To be more accurate, a vector w, assumes the 
form 

w1+i =pA(A)wl + q1-1(A)v., i ? 0, 

where p, and qi-I are polynomials of degree i and i - 1, respectively, with the 
convention that q1- 0. An arbitrary element of Km p is a linear combination of 

w,'s and vi's, but this does not seem to lead to a simple expression in terms of 
subspaces similar to those associated with the Lanczos algorithm or the block-Lanc- 
zos algorithm. We can only say that Km p c Km[vI] + Kp[wl, vm], where Ki [Z] here 
denotes the ith Krylov (or block-Krylov) subspace generated from the vector (or 
block) Z. 

5. Practical Considerations. An important feature of both the Lanczos-Galerkin 
process and the modified Lanczos process is that we must save a large number of 
vectors in secondary storage. This may seem impractical at first, but there are 
numerous reasons why it is not always so: 

* Once a vector has been computed, it is not needed until the convergence of the 
process is reached. There exists a simple formula for evaluating the residual norm of 
the solution without even having to compute the solution [9], [11], thus allowing the 
determination of the integers m and p. 
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* There are supercomputer systems with very fast auxiliary memories, e.g., the 
Cray-XMP with Solid-state Storage Device (SSD). 

* In many cases the dominant cost is the matrix-by-vector product, and therefore 
the priority is to economize on the number of matrix-by-vector multiplications. The 
Lanczos-Galerkin process of Section 3 requires only one matrix-vector product (for 
computing the initial residual rJ2)). 

The Lanczos-Galerkin process was successfully used in the context of stiff 
ordinary differential equations [3]. There, it often is the case that the cost of a 
matrix-by-vector multiplication is very high and the Lanczos-Galerkin process 
becomes attractive. 

It is important that the vectors v 's saved from the solution of the first linear 
system be orthogonal, since the Lanczos-Galerkin process is essentially based on the 
orthogonality of these vectors. Selective Orthogonalization [9] or Partial Ortho- 
gonalization [15] can both be used for that purpose alternatively to performing a full 
reorthogonalization at every step. Simon [15] has shown that any partial reortho- 
gonalization that guarantees semiorthogonality, i.e., orthogonality within the square 
root of the machine unit round-off emach' will also deliver an approximate solution 
vector that is within e mach of the ideal solution vector from the Krylov subspace. 
These orthogonalization schemes can also be extended to the modified Lanczos 
method. 

Numerical experiments with the Lanczos-Galerkin process for solving successive 
linear systems with slightly varying right-hand sides are described in [15]. It is shown 
there that the Lanczos-Galerkin procedure can be very effective in those situations. 
More recently, van der Vorst [16] took a different approach: The usual conjugate 
gradient formulation is adopted instead of the Lanczos formulation, and no reortho- 
gonalization of any form is used. However, in order to account for the loss of 
orthogonality of the previous residual vectors, a modified formula is proposed for 
projecting the new residual on the previous Krylov subspace. The numerical experi- 
ments seem to indicate that this modified formula is less prone to numerical 
instability than the original one. There has been no experimentation of the modified 
Lanczos process for solving linear systems, but Carnoy and Geradin [1] reported 
successful tests with a variant of this method for solving generalized eigenvalue 
problems. 
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